In the article, Quantum Theory Derived from Logic, a
logical expression was derived for
n parallel paths of m steps each. 
This is equation [7] shown again below.
 
  (q0  qn) 
  =
 qn) 
  =  ni1,i2,i3,i4...im=0  (q0
ni1,i2,i3,i4...im=0  (q0
   qi1)
  
  qi1) (qi1
(qi1  qi2)
 qi2) (qi2
(qi2  qi3)
 qi3) (qi3
(qi3  qi4)
 qi4) ...
... (qim
(qim  qn).
 qn).
  
 
To gain some confidence that this expression is true, you can 
cut and paste the text into this
truth-table generator. This is an expression for when n=4 and 
m=3. Altogether there are (n+1)m=53=125 
different terms of 4 implications each.
 
(q0
	=> q4)
  <=>
   ((q0
	=> q0)
    /\ (q0 
	=> q0) 
  /\ (q0 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q0) 
  /\ (q0 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q0) 
  /\ (q0 
	=> q2) 
  /\ (q2 
	=> q4)) 
    
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q0) 
  /\ (q0 
	=> q3) 
  /\ (q3 
	=> q4))
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q0) 
  /\ (q0 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q1) 
  /\ (q1 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q1) 
  /\ (q1 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q1) 
  /\ (q1 
	=> q2) 
  /\ (q2 
	=> q4))
    
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q1) 
  /\ (q1 
	=> q3) 
  /\ (q3 
	=> q4))
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q1) 
  /\ (q1 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q2) 
  /\ (q2 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q2) 
  /\ (q2 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q2) 
  /\ (q2 
	=> q2) 
  /\ (q2 
	=> q4))
    
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q2) 
  /\ (q2 
	=> q3) 
  /\ (q3 
	=> q4))
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q2) 
  /\ (q2 
	=> q4) 
  /\ (q4 
	=> q4))
    
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q3) 
  /\ (q3 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q3) 
  /\ (q3 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q3) 
  /\ (q3 
	=> q2) 
  /\ (q2 
	=> q4))
    
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q3) 
  /\ (q3 
	=> q3) 
  /\ (q3 
	=> q4))
  
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q3) 
  /\ (q3 
	=> q4) 
  /\ (q4 
	=> q4))
    
    
    
  
    
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q4) 
  /\ (q4 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q4) 
  /\ (q4 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q4) 
  /\ (q4 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q4) 
  /\ (q4 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q0)
    /\ (q0 
	=> q4) 
  /\ (q4 
	=> q4) 
  /\ (q4 
	=> q4))
    
    
    
  
	
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q0) 
  /\ (q0 
	=> q0) 
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q0) 
  /\ (q0 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q0) 
  /\ (q0 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q0) 
  /\ (q0 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q0) 
  /\ (q0 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q1) 
  /\ (q1 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q1) 
  /\ (q1 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q1) 
  /\ (q1 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q1) 
  /\ (q1 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q1) 
  /\ (q1 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q2) 
  /\ (q2 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q2) 
  /\ (q2 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q2) 
  /\ (q2 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q2) 
  /\ (q2 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q2) 
  /\ (q2 
	=> q4) 
  /\ (q4 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q3) 
  /\ (q3 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q3) 
  /\ (q3 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q3) 
  /\ (q3 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q3) 
  /\ (q3 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q3) 
  /\ (q3 
	=> q4) 
  /\ (q4 
	=> q4))
    
    
    
  
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q4) 
  /\ (q4 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q4) 
  /\ (q4 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q4) 
  /\ (q4 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q4) 
  /\ (q4 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q1)
    /\ (q1 
	=> q4) 
  /\ (q4 
	=> q4) 
  /\ (q4 
	=> q4))
	
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q0) 
  /\ (q0 
	=> q0) 
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q0) 
  /\ (q0 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q0) 
  /\ (q0 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q0) 
  /\ (q0 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q0) 
  /\ (q0 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q1) 
  /\ (q1 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q1) 
  /\ (q1 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q1) 
  /\ (q1 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q1) 
  /\ (q1 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q1) 
  /\ (q1 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q2) 
  /\ (q2 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q2) 
  /\ (q2 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q2) 
  /\ (q2 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q2) 
  /\ (q2 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q2) 
  /\ (q2 
	=> q4) 
  /\ (q4 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q3) 
  /\ (q3 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q3) 
  /\ (q3 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q3) 
  /\ (q3 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q3) 
  /\ (q3 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q3) 
  /\ (q3 
	=> q4) 
  /\ (q4 
	=> q4))
    
    
    
  
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q4) 
  /\ (q4 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q4) 
  /\ (q4 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q4) 
  /\ (q4 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q4) 
  /\ (q4 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q2)
    /\ (q2 
	=> q4) 
  /\ (q4 
	=> q4) 
  /\ (q4 
	=> q4))
	
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q0) 
  /\ (q0 
	=> q0) 
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q0) 
  /\ (q0 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q0) 
  /\ (q0 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q0) 
  /\ (q0 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q0) 
  /\ (q0 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q1) 
  /\ (q1 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q1) 
  /\ (q1 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q1) 
  /\ (q1 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q1) 
  /\ (q1 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q1) 
  /\ (q1 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q2) 
  /\ (q2 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q2) 
  /\ (q2 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q2) 
  /\ (q2 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q2) 
  /\ (q2 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q2) 
  /\ (q2 
	=> q4) 
  /\ (q4 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q3) 
  /\ (q3 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q3) 
  /\ (q3 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q3) 
  /\ (q3 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q3) 
  /\ (q3 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q3) 
  /\ (q3 
	=> q4) 
  /\ (q4 
	=> q4))
    
    
    
  
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q4) 
  /\ (q4 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q4) 
  /\ (q4 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q4) 
  /\ (q4 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q4) 
  /\ (q4 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q3)
    /\ (q3 
	=> q4) 
  /\ (q4 
	=> q4) 
  /\ (q4 
	=> q4))
\/ ((q0
	=> q4)
    /\ (q4 
	=> q0) 
  /\ (q0 
	=> q0) 
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q0) 
  /\ (q0 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q0) 
  /\ (q0 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q0) 
  /\ (q0 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q0) 
  /\ (q0 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q1) 
  /\ (q1 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q1) 
  /\ (q1 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q1) 
  /\ (q1 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q1) 
  /\ (q1 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q1) 
  /\ (q1 
	=> q4) 
  /\ (q4 
	=> q4))
 
  
  
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q2) 
  /\ (q2 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q2) 
  /\ (q2 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q2) 
  /\ (q2 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q2) 
  /\ (q2 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q2) 
  /\ (q2 
	=> q4) 
  /\ (q4 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q3) 
  /\ (q3 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q3) 
  /\ (q3 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q3) 
  /\ (q3 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q3) 
  /\ (q3 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q3) 
  /\ (q3 
	=> q4) 
  /\ (q4 
	=> q4))
    
    
    
  
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q4) 
  /\ (q4 
	=> q0)
  /\ (q0 
	=> q4))
	
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q4) 
  /\ (q4 
	=> q1) 
  /\ (q1 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q4) 
  /\ (q4 
	=> q2) 
  /\ (q2 
	=> q4))
    
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q4) 
  /\ (q4 
	=> q3) 
  /\ (q3 
	=> q4))
  \/ ((q0
	=> q4)
    /\ (q4 
	=> q4) 
  /\ (q4 
	=> q4) 
  /\ (q4 
	=> q4))